3.445 \(\int \frac{x^2}{(8 c-d x^3)^2 (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=88 \[ -\frac{1}{81 c^2 d \sqrt{c+d x^3}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{5/2} d}+\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}} \]

[Out]

-1/(81*c^2*d*Sqrt[c + d*x^3]) + 1/(27*c*d*(8*c - d*x^3)*Sqrt[c + d*x^3]) + ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])
]/(243*c^(5/2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0638284, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {444, 51, 63, 206} \[ -\frac{1}{81 c^2 d \sqrt{c+d x^3}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{5/2} d}+\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-1/(81*c^2*d*Sqrt[c + d*x^3]) + 1/(27*c*d*(8*c - d*x^3)*Sqrt[c + d*x^3]) + ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])
]/(243*c^(5/2)*d)

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\left (8 c-d x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{(8 c-d x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{18 c}\\ &=-\frac{1}{81 c^2 d \sqrt{c+d x^3}}+\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{162 c^2}\\ &=-\frac{1}{81 c^2 d \sqrt{c+d x^3}}+\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{81 c^2 d}\\ &=-\frac{1}{81 c^2 d \sqrt{c+d x^3}}+\frac{1}{27 c d \left (8 c-d x^3\right ) \sqrt{c+d x^3}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{243 c^{5/2} d}\\ \end{align*}

Mathematica [C]  time = 0.0120503, size = 43, normalized size = 0.49 \[ -\frac{2 \, _2F_1\left (-\frac{1}{2},2;\frac{1}{2};\frac{d x^3+c}{9 c}\right )}{243 c^2 d \sqrt{c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((8*c - d*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-2*Hypergeometric2F1[-1/2, 2, 1/2, (c + d*x^3)/(9*c)])/(243*c^2*d*Sqrt[c + d*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 463, normalized size = 5.3 \begin{align*} -{\frac{2}{243\,d{c}^{2}}{\frac{1}{\sqrt{ \left ({x}^{3}+{\frac{c}{d}} \right ) d}}}}-{\frac{1}{243\,d{c}^{2} \left ( d{x}^{3}-8\,c \right ) }\sqrt{d{x}^{3}+c}}-{\frac{{\frac{i}{1458}}\sqrt{2}}{{d}^{3}{c}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x)

[Out]

-2/243/d/c^2/((x^3+1/d*c)*d)^(1/2)-1/243/d/c^2*(d*x^3+c)^(1/2)/(d*x^3-8*c)-1/1458*I/d^3/c^3*2^(1/2)*sum((-d^2*
c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c
)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^
2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)
+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*
I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(
-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/
d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.93065, size = 482, normalized size = 5.48 \begin{align*} \left [\frac{{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{c} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 6 \,{\left (c d x^{3} - 5 \, c^{2}\right )} \sqrt{d x^{3} + c}}{486 \,{\left (c^{3} d^{3} x^{6} - 7 \, c^{4} d^{2} x^{3} - 8 \, c^{5} d\right )}}, -\frac{{\left (d^{2} x^{6} - 7 \, c d x^{3} - 8 \, c^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) + 3 \,{\left (c d x^{3} - 5 \, c^{2}\right )} \sqrt{d x^{3} + c}}{243 \,{\left (c^{3} d^{3} x^{6} - 7 \, c^{4} d^{2} x^{3} - 8 \, c^{5} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/486*((d^2*x^6 - 7*c*d*x^3 - 8*c^2)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) -
6*(c*d*x^3 - 5*c^2)*sqrt(d*x^3 + c))/(c^3*d^3*x^6 - 7*c^4*d^2*x^3 - 8*c^5*d), -1/243*((d^2*x^6 - 7*c*d*x^3 - 8
*c^2)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 3*(c*d*x^3 - 5*c^2)*sqrt(d*x^3 + c))/(c^3*d^3*x^6 - 7*
c^4*d^2*x^3 - 8*c^5*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-d*x**3+8*c)**2/(d*x**3+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.1286, size = 97, normalized size = 1.1 \begin{align*} -\frac{\arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{243 \, \sqrt{-c} c^{2} d} - \frac{d x^{3} - 5 \, c}{81 \,{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} - 9 \, \sqrt{d x^{3} + c} c\right )} c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-1/243*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^2*d) - 1/81*(d*x^3 - 5*c)/(((d*x^3 + c)^(3/2) - 9*sqrt
(d*x^3 + c)*c)*c^2*d)